Discovering a junction tree behind a Markov network by a greedy algorithm

نویسندگان

  • Tamás Szántai
  • Edith Kovács
چکیده

Abstract In our paper [18] we introduced a special kind of k-width junction tree, called k-th order t-cherry junction tree in order to approximate a joint probability distribution. The approximation is the best if the Kullback-Leibler divergence between the true joint probability distribution and the approximating one is minimal. Finding the best approximating k-width junction tree is NP-complete if k > 2 (see in [12]). In [19] we also proved that the best approximating k-width junction tree can be embedded into a k-th order t-cherry junction tree. We introduce a greedy algorithm resulting very good approximations in reasonable computing time. In this paper we prove that if the Markov network underlying fullfills some requirements then our greedy algorithm is able to find the true probability distribution or its best approximation in the family of the k-th order t-cherry tree probability distributions. Our algorithm uses just the k-th order marginal probability distributions as input. We compare the results of the greedy algorithm proposed in this paper with the greedy algorithm proposed by Malvestuto [16].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Generation Expansion Planning Considering Load Growth Uncertainty: A Novel Multi-Period Stochastic Model

Abstract – Distributed generation (DG) technology is known as an efficient solution for applying in distribution system planning (DSP) problems. Load growth uncertainty associated with distribution network is a significant source of uncertainty which highly affects optimal management of DGs. In order to handle this problem, a novel model is proposed in this paper based on DG solution, consideri...

متن کامل

درخت تجمیع داده براساس الگوریتم پویای شکل گیری رودخانه درشبکه حسگر بی سیم

One of the main challenges in Wireless Sensor Networks is the limited energy of nodes which can cause to reduce the lifetime of nodes and whole network respectively. Transmissions between the nodes consumes most of the nodes' energy so minimization of unnecessary transmissions can led to reduction of energy consumption. Therefor routing protocols designed based on optimal energy consumption are...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Bayesian Algorithms for Causal Data Mining

We present two Bayesian algorithms CD-B and CD-H for discovering unconfounded cause and effect relationships from observational data without assuming causal sufficiency which precludes hidden common causes for the observed variables. The CD-B algorithm first estimates the Markov blanket of a node X using a Bayesian greedy search method and then applies Bayesian scoring methods to discriminate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1104.2762  شماره 

صفحات  -

تاریخ انتشار 2011